Страницы

Вселенная


Крупномасштабная структура Вселенной, как она выглядит в инфракрасных лучах с длиной волны 2,2 мкм — 1 600 000 галактик, зарегистрированных в Extended Source Catalog как результат Two Micron All-Sky Survey. Яркость галактик показана цветом от синего (самые яркие) до красного (самые тусклые). Тёмная полоса по диагонали и краям картины — расположение Млечного Пути, пыль которого мешает наблюдениям
Вселенная — не имеющее строгого определения понятие в астрономии и философии. Оно делится на две принципиально отличающиеся сущности: умозрительную (философскую) и материальную, доступную наблюдениям в настоящее время или в обозримом будущем. Если автор различает эти сущности, то, следуя традиции, первую называют Вселенной, а вторую — астрономической Вселенной или Метагалактикой (в последнее время этот термин практически вышел из употребления). Вселенная является предметом исследования космологии.

В историческом плане для обозначения «всего пространства» использовались различные слова, включая эквиваленты и варианты из различных языков, такие как «космос», «мир», «небесная сфера». Использовался также термин «макрокосмос», хотя он предназначен для определения систем большого масштаба, включая их подсистемы и части. Аналогично, слово «микрокосмос» используется для обозначения систем малого масштаба.

Любое исследование, любое наблюдение, будь то наблюдение физика за тем, как раскалывается ядро атома, ребёнка за кошкой или астронома, ведущего наблюдения за далёкой-далёкой галактикой, — всё это наблюдение за Вселенной, вернее, за отдельными её частями. Эти части служат предметом изучения отдельных наук, а Вселенной в максимально больших масштабах, и даже Вселенной как единым целым занимаются астрономия и космология; при этом под Вселенной понимается или область мира, охваченная наблюдениями и космическими экспериментами, или объект космологических экстраполяций — физическая Вселенная как целое.

Предметом статьи являются знания о наблюдаемой Вселенной как о едином целом: наблюдения, их теоретическая интерпретация и история становления.

Среди однозначно интерпретируемых фактов относительно свойств Вселенной приведём здесь следующие:


В основу теоретических объяснений и описаний этих явлений положен космологический принцип, суть которого в том, что наблюдатели, независимо от места и направления наблюдения, в среднем обнаруживают одну и ту же картину. Сами теории стремятся объяснить и описать происхождение химических элементов, ход развития и причину расширения, возникновение крупномасштабной структуры.

Первый значительный толчок в сторону современных представлений о Вселенной совершил Коперник. Второй по величине вклад внесли Кеплер и Ньютон. Но поистине революционные изменения в наших представлениях о Вселенной происходят лишь в XX веке.

Этимология

В русском языке слово «Вселенная» является заимствованием из старославянского «въсєлена», что является калькой древнегреческого слова «ойкумена» (др.-греч. οἰκουμένη), от глагола οἰκέω «населяю, обитаю» и в первом значении имело смысл лишь обитаемой части мира. Поэтому русское слово «Вселенная» родственно существительному «вселение» и лишь созвучно определительному местоимению «всё». Самое общее определение для «Вселенной» среди древнегреческих философов, начиная с пифагорейцев, было τὸ πᾶν (Всё), включавшее в себя как всю материю (τὸ ὅλον), так и весь космос (τὸ κενόν).

Облик Вселенной


 Представляя Вселенную как весь окружающий мир, мы сразу делаем её уникальной и единственной. И вместе с этим лишаем себя возможности описать её в терминах классической механики: из-за своей уникальности Вселенная ни с чем не может взаимодействовать, она — система систем, и поэтому в её отношении теряют свой смысл такие понятия, как масса, форма, размер. Вместо этого приходится прибегать к языку термодинамики, употребляя такие понятия как плотность, давление, температура, химический состав.

Расширение Вселенной
 Однако, Вселенная мало похожа на обычный газ. Уже на самых крупных масштабах мы сталкиваемся с расширением Вселенной и реликтовым фоном. Природа первого явления — гравитационное взаимодействие всех существующих объектов. Именно его развитием определяется будущее Вселенной. Второе же явление — это наследство ранних эпох, когда свет горячего Большого взрыва практически перестал взаимодействовать с материей, отделился от неё. Сейчас, из-за расширения Вселенной, из видимого диапазона большинство излучённых тогда фотонов перешли в микроволновой радиодиапазон.


Иерархия масштабов во Вселенной
При переходе к масштабам меньше 100 Мпк обнаруживается чёткая ячеистая структура. Внутри ячеек пустота — войды. А стенки образованы из сверхскоплений галактик. Эти сверскопления — верхний уровень целой иерархии, затем идут скопления галактик, потом локальные группы галактик, а самый нижний уровень (масштаб 5—200 кпк) — это огромное многообразие самых различных объектов. Конечно, все они — галактики, но все они различны: это и линзовидные, неправильные, эллиптические, спиральные, с полярным кольцами, с активными ядрами и т. д.

Из них отдельно стоит упомянуть квазары, отличающихся очень высокой светимостью и настолько малым угловым размером, что в течение нескольких лет после открытия их не удавалось отличить от «точечных источников» — звёзд. Болометрическая светимость квазаров может достигать 1046 — 1047 эрг/с.

Переходя к составу галактики мы обнаруживаем: тёмную материю, космические лучи, межзвёздный газ, шаровые скопления, рассеянные скопления, двойные звёзды, звёздные системы большей кратности, сверхмассивные чёрные дыры и чёрные дыры звёздной массы, и, наконец, одиночные звёзды разного населения.

Их индивидуальная эволюция и взаимодействие друг с другом порождает множество явлений. Так предполагается, что источником энергии у упомянутых уже квазаров служит аккреция межзвёздного газа на сверхмассивную центральную чёрную дыру.

Отдельно стоит упомянуть и о гамма-всплесках — это внезапные кратковременные локализуемые повышения интенсивности космического гамма-излучения с энергией в десятки и сотни кэВ. Из оценок расстояний до гамма-всплесков можно сделать вывод, что излучаемая ими энергия в гамма-диапазоне достигает 1050 эрг. Для сравнения, светимость всей галактики в этом же диапазоне составляет «всего» 1038 эрг/c. Такие яркие вспышки видны из самых далеких уголков Вселенной, так у GRB 090423 красное смещение z = 8,2.

Сложнейшим комплексом, включающим в себя множество процессов, является эволюция галактики:


Ход эволюции малозависим от того, что происходит со всей галактикой в целом. Однако, общее число вновь образующихся звёзд и их параметры подвержены значительному внешнему влиянию. Процессы, масштабы которых сравнимы или больше размера галактики , меняют морфологическую структуру, темп звездообразования, а значит, и скорость химической эволюции, спектр галактики и так далее.

Наблюдения

Описанное выше многообразие порождает целый спектр задач наблюдательного характера. В одну группу можно включить изучение отдельных феноменов и объектов, а это:
  • Феномен расширения. 
А для этого нужно измерять расстояния и красные смещения и как можно более далеких объектов. При ближайшем рассмотрении это выливается в целый комплекс задач, называемый шкалой расстояний.
  • Реликтовый фон. 
  • Отдельные удалённые объекты, как квазары и гамма-всплески.
Далёкие и старые объекты излучают мало света и необходимы гигантские телескопы, такие как обсерватория Кека, VLT, БТА, «Хаббл» и строящиеся E-ELT и «Джеймс Уэбб». Кроме того, для выполнения первой задачи необходимы и специализированные средства — такие, как Hipparcos и разрабатывающаяся Gaia.

Как было сказано, излучение реликтового лежит в микроволновом диапазоне длин волн, следовательно, для его изучения необходимы радионаблюдения и, желательно, космическими телескопами, такими как WMAP и «Планк».

Уникальные особенности гамма-всплесков требуют не только гамма-лабораторий на орбите, наподобие SWIFT, но и необычных телескопов — робот-телескопов — чьё поле зрения больше, чем у вышеупомянутых инструментов SDSS, и способных наблюдать в автоматическом режиме. Примерами таких систем может служить телескопы российской сети «Мастер» и российско-итальянский проект Tortora.

Предыдущие задачи — это работа по отдельным объектам. Совсем иной подход требуется для:
  • Изучения крупномасштабной структуры Вселенной.
  • Изучение эволюции галактик и процессов её составляющие. 
Таким образом нужны наблюдения как можно более старых объектов и как можно в большем числе. С одной стороны необходимы массовые, обзорные наблюдения. Это вынуждает использовать телескопы с широким полем, например, такие, как в проекте SDSS. С другой стороны требуется детализация, на порядки превышающая надобности большинства задач предыдущей группы. А это возможно только с помощью РСДБ-наблюдений, с базой в диаметр Земли, или ещё больше как эксперименте «Радиоастрон».

Отдельно стоит выделить поиск реликтовых нейтрино. Для её решения необходимо задействовать специальные телескопы — нейтринные телескопы и нейтринные детекторы, — такие как Баксанский нейтринный телескоп, Байкальский подводный, IceCube, KATRIN.

Одно изучение гамма-всплесков, да реликтового фона свидетельствует о том, что только оптическим участком спектра тут не обойтись. Однако атмосфера Земли имеет всего два окна прозрачности: в радио- и оптическом диапазоне, и поэтому без космических обсерваторий не обойтись. Из ныне действующих в пример тут приведем Chandra, Integral, XMM-Newton, Гершель. В разработке находятся «Спектр-УФ», IXO, «Спектр-РГ», Astrosat и многие другие.

Шкала расстояний и космологическое красное смещение

Измерение расстояния в астрономии — многоступенчатый процесс. И основная сложность заключается в том, что наилучшие точности в разных методах достигаются на разных масштабах. Поэтому для измерений всё более и более далёких объектов используется всё более и более длинная цепочка методов, каждый из которых опирается на результаты предыдущего.

В основании всех эти цепочек лежит метод тригонометрического параллакса — базовый, единственный, где расстояние измеряется геометрически, с минимальным привлечением допущений и эмпирических закономерностей. Прочие методы, в большинстве своем, для измерения расстояния используют стандартную свечу — источник с известной светимостью. И расстояние до него можно вычислить:

где D — искомое расстояние, L — светимость, а F — измеренный световой поток.


Схема возникновения годичного параллакса

Метод тригонометрического параллакса:
Расширение Вселенной

Параллакс — это угол, возникающий благодаря проекции источника на небесную сферу. Различают два вида параллакса: годичный и групповой.

Годичный параллакс — угол, под которым был бы виден средний радиус земной орбиты из центра масс звезды. Из-за движения Земли по орбите видимое положение любой звезды на небесной сфере постоянно сдвигается — звезда описывает эллипс, большая полуось которого оказывается равной годичному параллаксу. По известному параллаксу из законов евклидовой геометрии расстояние от центра земной орбиты до звезды можно найти как:


где D — искомое расстояние, R — радиус земной орбиты, а приближённое равенство записано для малого угла (в радианах). Данная формула хорошо демонстрирует основную трудность этого метода: с увеличением расстояния значение параллакса убывает по гиперболе, и поэтому измерение расстояний до далеких звёзд сопряжено со значительными техническими трудностями.

Суть группового параллакса состоит в следующем: если некое звёздное скопление имеет заметную скорость относительно Земли, то по законам проекции видимые направления движения его членов будут сходиться в одной точке, называемой радиантом скопления. Положение радианта определяется из собственных движений звёзд и смещения их спектральных линий, возникшего из-за эффекта Доплера.*

Тогда расстояние до скопления находится из следующего соотношения:


где μ и Vr — соответственно угловая (в секундах дуги в год) и лучевая (в км/с) скорость звезды скопления, λ — угол между прямыми Солнце — звезда и звезда — радиант, а D — расстояние, выраженное в парсеках. Только Гиады имеют заметный групповой параллакс, но до запуска спутника Hipparcos только таким способом можно откалибровать шкалу расстояний для старых объектов.

Метод определения расстояния
по цефеидам и звёздам типа RR Лиры

На цефеидах и звёздах типа RR Лиры единая шкала расстояний расходится на две ветви — шкалу расстояний для молодых объектов и для старых. Цефеиды расположены, в основном, в областях недавнего звёздообразования и поэтому являются молодыми объектами. Переменные типа RR Лиры тяготеют к старым системам, например, особенно их много в шаровых звёздных скоплениях в гало нашей Галактики.

Оба типа звёзд являются переменными, но если цефеиды — недавно образовавшиеся объекты, то звёзды типа RR Лиры сошли с главной последовательности — гиганты спектральных классов A—F, расположенные, в основном, на горизонтальной ветви диаграммы «цвет-величина» для шаровых скоплений. Однако, способы их использования как стандартных свеч различны:
  • Для цефеид существует хорошая зависимость «период пульсации — абсолютная звёздная величина». Скорее всего, это связано с тем, что массы цефеид различны.
  • Для звёзд RR Лиры средняя абсолютная звёздная величина примерно одинакова и составляет M_{RR}\approx0.78^m.
Определение данным методом расстояний сопряжено с рядом трудностей:
  1. Необходимо выделить отдельные звёзды. В пределах Млечного Пути это не составляет особого труда, но чем больше расстояние, тем меньше угол, разделяющий звёзды.
  2. Необходимо учитывать поглощение света пылью и неоднородность её распределения в пространстве.
  3. Кроме того, для цефеид остаётся серьёзной проблемой точное определение нуль-пункта зависимости «период пульсации — светимость». На протяжении XX века его значение постоянно менялось, а значит, менялась и оценка расстояния, получаемая подобным способом. Светимость звёзд типа RR Лиры, хотя и почти постоянна, но всё же зависит от концентрации тяжёлых элементов.
Метод определения расстояния по сверхновым типа Ia:


Кривые блеска различных сверхновых
Вспышка сверхновой — колоссальный взрывной процесс, происходящий по всему телу звезды, при этом выделившейся энергии лежит в диапазоне от 1050 — 1051 эрг. А также сверхновые типа Ia имеют одинаковую светимость в максимуме блеска. Вместе это позволяет измерять расстояния до очень далёких галактик.

Именно благодаря им в 1998 году две группы наблюдателей открыли ускорение расширения Вселенной. На сегодняшний день факт ускорения почти не вызывает сомнений, однако, по сверхновым невозможно однозначно определить его величину: всё ещё крайне велики ошибки для больших z.

Обычно, помимо общих для всех фотометрических методов, к недостаткам и открытым проблемам относят:
  • Проблема К-поправки.
Суть этой проблемы состоит в том, что измеряется не боллометрическая интенсивность (интегрированная по всему спектру), а в определённом спектральном диапазоне приёмника. Это значит, что для источников, имеющие разные красные смещения, измеряется интенсивность в разных спектральных диапазонах. Для учёта этого различия вводится особая поправка, называемая К-поправка.
  • Форма кривой зависимости расстояния от красного смещения измеряется разными обсерваториями на разных инструментах, что порождает проблемы с калибровками потоков и т. п.
Раньше считалось, что все сверхновые Ia — это взрывающиеся белые карлики в тесной двойной системе, где второй компонент — это красный гигант. Однако появились свидетельства, что по крайне мере часть из них могут возникать в ходе слияния двух белых карликов, а значит этот подкласс уже не походит для использования в качестве стандартной свечи.
  • Зависимость светимости сверхновой от химического состава звезды-предшественницы.
Геометрия гравитационного линзирования:

Проходя около массивного тела, луч света отклоняется. Таким образом, массивное тело способно собирать параллельный пучок света в некотором фокусе, строя изображение, причём их может быть несколько. Это явление называется гравитационным линзированием. Если линзируемый объект — переменный, и наблюдается несколько его изображений, это открывает возможность измерения расстояний, так как между изображениями будут различные временны́е задержки из-за распространения лучей в разных частях гравитационного поля линзы (эффект аналогичен эффекту Шапиро в Солнечной системе).

Если в качестве характерного масштаба для координат изображения ξ и источника η (см. рисунок) в соответствующих плоскостях взять ξ0=Dl и η00Ds/Dl (где D — угловое расстояние), тогда можно записывать временно́е запаздывание между изображениями номер i и j следующим образом:


где x=ξ/ξ0 и y=η/η0 — угловые положения источника и изображения соответственно, с — скорость света, zl — красное смещение линзы, а ψ — потенциал отклонения, зависящий от выбора модели. Считается, что в большинстве случаев реальный потенциал линзы хорошо аппроксимируется моделью, в которой вещество распределено радиально симметрично, а потенциал превращается в бесконечность. Тогда время задержки определяется по формуле:


Однако, на практике чувствительность метода к виду потенциала гало галактики существенна. Так, измеренное значение H0 по галактике SBS 1520+530 в зависимости от модели колеблется от 46 до 72 км/(с Мпк).

Метод определения расстояния по красным гигантам:

Ярчайшие красные гиганты имеют одинаковую абсолютную звёздную величину −3.0m±0.2m, а значит, подходят на роль стандартных свеч. Наблюдательно первым этот эффект обнаружил Сендидж в 1971 году. Предполагается, что эти звёзды либо находятся на верхней точке первого подъёма ветви красных гигантов звёзд малой массы (меньше солнечной), либо лежат на асимптотической ветви гигантов.

Основным достоинством метода является то, что красные гиганты удалены от областей звёздообразования и повышенной концентрации пыли, что сильно облегчает учёт поглощения. Их светимость также крайне слабо зависит от металличности как самих звёзд, так и окружающей их среды. Основная проблема данного метода — выделение красных гигантов из наблюдений звёздного состава галактики. Существует два пути её решения:
  • Классический — метод выделения края изображений. При этом обычно применяют Собелевский фильтр. Начало провала — искомая точка поворота. Иногда вместо собелевского фильтра в качестве аппроксимирующей функции берут гауссиану, а функция выделения края зависит от фотометрических ошибок наблюдений. Однако, по мере ослабления звезды растут и ошибки метода. В итоге предельно измеряемый блеск на две звёздных величины хуже, чем позволяет аппаратура.
  • Второй путь — построение функции светимости методом максимального правдоподобия. Данный способ основывается на том, что функция светимости ветви красных гигантов хорошо аппроксимируется степенной функцией:
    \xi(m)\propto 10^{am},
где a — коэффициент, близкий к 0,3, m — наблюдаемая звёздная величина. Основная проблема — расходимость в некоторых случаях рядов, возникающих в результате работы метода максимального правдоподобия.
Основная проблема — расходимость в некоторых случаях рядов, возникающих в результате работы метода максимального правдоподобия.

Проблемы и современные дискуссии:

Одной из проблем является неопределённость в значении постоянной Хаббла и её изотропии. Одна группа исследователей утверждает, что значение постоянной Хаббла флуктуирует на масштабах 10-20°. Возможных причин этому явлению несколько:
  • Реальный физический эффект — в таком случае космологическая модель должна быть кардинально пересмотрена;
     
  • Стандартная процедура усреднения ошибок некорректна. Это также ведёт к пересмотру космологической модели, но возможно, не такой значительной. В свою очередь, многие другие обзоры и их теоретическая интерпретация не показывают анизотропии, превышающей локально обусловленную ростом неоднородности, в которую входит и наша Галактика, в изотропной в целом Вселенной.

Спектр реликтового излучения
Изучение реликтового фона:

Информация, которую возможно получить, наблюдая реликтовый фон, крайне разнообразна: примечателен сам факт существования реликтового фона. Если Вселенная существовала вечно, то неясна причина его существования — массовых источников, способных создать такой фон, мы не наблюдаем. Однако если время жизни Вселенной конечно, то очевидно, что причина его возникновения кроется на начальных этапах её становления.

На сегодняшний день доминирует мнение, что реликтовое излучение — это излучение, высвободившееся в момент образования атомов водорода. До этого излучение было заперто в веществе, а вернее, в том, что тогда оно из себя представляло — плотной горячей плазме.

Метод анализа реликтового фона на этом предположении и базируется. Если мысленно проследить путь каждого фотона, то получится, что поверхность последнего рассеяния — сфера, тогда колебания температуры удобно разложить в ряд по сферическим функциям:

где a_{lm} — коэффициенты, называемые мультипольными, а Y_{lm} — сферические гармоники. Получающаяся информация довольно разнообразна.
  1. Различная информация заложена также и в отклонениях от чернотельного излучения. Если отклонения масштабны и систематичны, то наблюдается эффект Сюняева — Зельдовича, малые же флуктуации обусловлены флуктуациями вещества на ранних стадиях развития Вселенной.
  2. Особо ценную информацию о первых секундах жизни Вселенной (в частности, о стадии инфляционного расширения) несёт поляризация реликтового фона.
Эффект Сюняева — Зельдовича

Если фотоны реликтового фона на своём пути встречают горячий газ скоплений галактик, то в ходе рассеяния за счёт обратного эффекта Комптона фотоны будут разогреваться (то есть увеличат частоту), забирая часть энергии у горячих электронов. Наблюдательно это будет проявляться снижением потока реликтового излучения в направлении крупных скоплений галактик в длинноволновой области спектра.

С помощью этого эффекта можно получить информацию:
  • о давлении горячего межгалактического газа в скоплении, а, возможно, и о самой массе скопления;
  • о скорости скопления вдоль луча зрения (из наблюдений на разных частотах);
  • о величине постоянной Хаббла H0, с привлечением наблюдений в гамма-диапазоне.
При достаточном количестве наблюдаемых скоплений можно определить и общую плотность Вселенной Ω.


Карта поляризации реликтового излучения по данным WMAP
Поляризация реликтового излучения могла возникнуть только в эпоху просветления. Так как рассеяние томпсоновское, то реликтовое излучение линейно поляризовано. Соответственно, параметры Стокса Q и U, характеризующие линейные параметры, отличны, а параметр V равен нулю. Если интенсивность можно разложить по скалярным гармоникам, то поляризацию можно разложить по так называемым спиновым гармоникам:


Выделяются E-мода (градиентная составляющая)
и B-мода (роторная составляющая).



E-мода может появляться при прохождении излучения через неоднородную плазму вследствие томпсоновского рассеяния. B-мода, максимальная амплитуда которой достигает всего лишь 0,1 \mu K, возникает лишь при взаимодействии с гравитационными волнами.

B-мода является признаком инфляции Вселенной и определяется плотностью первичных гравитационных волн. Наблюдение B-моды является сложной задачей вследствие неизвестного уровня шума для этой компоненты реликтового излучения, а также за счёт того, что B-мода смешивается слабым гравитационным линзированием с более сильной E-модой.

На сегодняшний день поляризация обнаружена, её величина на уровне в несколько \mu K (микрокельвинов). B-моду долгое время не наблюдали. Впервые её обнаружили в 2013 году, а в 2014 подтвердили.

Флуктуации реликтового фона

После удаления фоновых источников, постоянной составляющей дипольной и квадрупольной гармоник, остаются только разбросанные по небу флуктуации, разброс амплитуды которых лежит в диапазоне от −15 до 15 μK.

Для сравнение с теоретическими данным сырые данные приводятся к вращательно-инвариантной величине:

«Спектр» же строят для величины l(l+1)Cl/2π, из которого получают важные для космологии выводы. К примеру, по положению первого пика можно судить о полной плотности Вселенной, а по его величине — содержание барионов.

Так из совпадения кросс-корреляции между анизотропией и E-модой поляризации с теоретическими предсказанными для малых углов и значительного расхождения в области больших можно сделать о наличии эпохи рекомбинации на z ≈ 15—20.

Так как флуктуации гауссовы, то можно использовать метод марковских цепей для построения поверхности максимального правдоподобия. В целом обработка данных по реликтовому фону это целый комплекс программ. Однако, как итоговый результат, так и используемые предположения и критерия вызывают дискуссию. Различными группами показано, отличие распределения флуктуаций от гауссова, зависимость карты распределений от алгоритмов его обработки.

Неожиданным результатом стало аномальное распределение на больших масштабах(от 6° и больше). Качество последних подтверждающих данных, полученные на космической обсерватории имени Планка, исключают ошибки измерений. Возможно, они вызваны ещё не обнаруженным и не исследованным явлением.

Наблюдение далёких объектов
Лайман-альфа лес

В спектрах некоторых далеких объёктов можно наблюдать большое скопление сильных абсорбционных линий на малом участке спектра (т. н. лес линий). Эти линии отождествляются как линии серии Лаймана, но имеющие разные красные смещения.

Облака нейтрального водорода эффективно поглощают свет на длинах волн от (1216 Å) до лаймановского предела. Излучение, изначально коротковолновое, на пути к нам из-за расширения Вселенной поглощается там, где его длина волны сравнивается с этим «лесом».

Сечение взаимодействия очень большое и расчёт показывает, что даже малой доли нейтрального водорода достаточно для создания большого поглощения в непрерывном спектре.

При большом количестве облаков нейтрального водорода на пути света, линии будут расположены настолько близко друг к другу, что на довольно широком интервале в спектре образуется провал. Длинноволновая граница этого интервала обусловлена , а коротковолновая зависит от ближайшего красного смещения, ближе которого среда ионизована и нейтрального водорода мало. Подобный эффект носит названия эффекта Гана-Петерсона.

Эффект наблюдается в квазарах с красным смещением z > 6. Отсюда делается вывод, что эпоха ионизации межгалактического газа началась с z ≈ 6.

Гравитационно-линзированные объекты

К эффектам, наблюдения которых возможны также для любого объекта (даже не важно, чтобы он был далёким), необходимо отнести и эффект гравитационного линзирования. В прошлом разделе было указано, что с помощью гравитационного линзирования строят шкалу расстояний, это вариант так называемого сильного линзирования, когда угловое разделение изображений источника можно непосредственно наблюдать. Однако существует ещё и слабое линзирование, с его помощью можно исследовать потенциал изучаемого объекта. Так, с его помощью было установлено, что скопления галактик размером от 10 до 100 Мпк являются гравитационно связанными, тем самым являясь самыми крупными стабильными системами во Вселенной. Также выяснилось, что обеспечивает эту стабильность масса, проявляющаяся только в гравитационном взаимодействии — тёмная масса или, как её называют в космологии, тёмная материя.


Природа квазара
Уникальное свойство квазаров — большие концентрации газа в области излучения. По современным представлениям, аккреция этого газа на чёрную дыру и обеспечивает столь высокую светимость объектов. Высокая концентрация вещества означает и высокую концентрацию тяжёлых элементов, а значит и более заметные абсорбционные линии. Так, в спектре одного из линзируемых квазаров были обнаружены линии воды.

Уникальным преимуществом является и высокая светимость в радиодиапазоне, на её фоне поглощение части излучения холодным газом более заметно. При этом газ может принадлежать как родной галактике квазара, так и случайному облаку нейтрального водорода в межгалактической среде, или галактике, случайно попавшей на луч зрения (при этом нередки случаи, когда такая галактика не видна — она слишком тусклая для наших телескопов).

Изучение межзвёздного вещества в галактиках данным методом называется «изучением на просвет», к примеру, подобным образом была обнаружена первая галактика со сверхсолнечной металличностью.

Также важным результатом применения данного метода, правда не в радио-, а в оптическом диапазоне, являются измерения первичного обилия дейтерия. Современное значение обилия дейтерия, полученное по таким наблюдениям, составляет D/H_p\approx 3\cdot 10^{-5}.

С помощью квазаров получены уникальные данные о температуре реликтового фона на z ≈ 1,8 и на z = 2,4. В первом случае исследовались линии сверхтонкой структуры нейтрального углерода, для которых кванты с T ≈ 7,5 К (предполагаемая температура реликтового фона на тот момент) играют роль накачки, обеспечивая инверсную заселённость уровней. Во втором случае обнаружили линии молекулярного водорода H2, дейтерида водорода HD, а также молекулы оксида углерода СО, по интенсивности спектра которой как раз и измерили температуру реликтового фона, она с хорошей точностью совпала с ожидаемым значением.

Ещё одно достижение, состоявшееся благодаря квазарам — оценка темпа звездообразования на больших z. Сначала, сравнивая спектры двух различных квазаров, а потом сравнивая отдельные участки спектра одного и того же квазара, обнаружили сильный провал на одном из UV участков спектра. Столь сильный провал мог быть вызван только большой концентрацией пыли, поглощающей излучение. Ранее пыль пытались обнаружить по спектральным линиям, но выделить конкретные серии линий, доказывающее, что это именно пыль, а не примесь тяжёлых элементов в газе, не удавалось. Именно дальнейшее развитие этого метода позволило оценить темп звёздообразования на z от ~ 2 до ~ 6.

Наблюдения гамма-всплесков


Популярная модель возникновения гамма-всплеска
Гамма-всплески — уникальное явление, и общепризнанного мнения о его природе не существует. Однако подавляющее большинство учёных соглашается с утверждением, что прародителем гамма всплеска являются объекты звёздной массы.

Уникальные возможности применения гамма-всплесков для изучения структуры Вселенной состоят в следующем:

Так как прародителем гамма-всплеска является объект звёздной массы, то и проследить гамма-всплески можно на большее расстояние, нежели квазары, как по причине более раннего формирования самого прародителя, так и из-за малой массы чёрной дыры квазара, а значит и меньшей его светимости на тот период времени. Спектр гамма-всплеска — непрерывный, то есть не содержит спектральных линий. Это означает, что самые далёкие линии поглощения в спектре гамма-всплеска — это линии межзвёздной среды родительской галактики. Из анализа этих спектральных линий можно получить информацию о температуре межзвёздной среды, её металличности, степени ионизации и кинематике.

Гамма-всплески дают чуть ли не идеальный способ изучать межгалактическую среду до эпохи реионизации, так как их влияние на межгалактическую среду на 10 порядков меньше, нежели квазаров, из-за малого времени жизни источника. Если послесвечение гамма-всплеска в радиодиапазоне достаточно сильное, то по линии 21 см можно судить о состоянии различных структур нейтрального водорода в межгалактической среде вблизи от галактики-прародителя гамма-всплеска. Детальное изучение процессов формирования звёзд на ранних этапах развития Вселенной с помощью гамма-всплесков сильно зависит от выбранной модели природы явления, но если набрать достаточную статистику и построить распределения характеристик гамма-всплесков в зависимости от красного смещения, то, оставаясь в рамках довольно общих положений, можно оценить темп звёздообразования и функцию масс рождающихся звёзд.

Если принять предположение, что гамма-всплеск — это взрыв сверхновой звезды населения III, то можно изучать историю обогащения Вселенной тяжёлыми металлами. Также гамма-всплеск может служить указателем на очень слабую карликовую галактику, которую трудно обнаружить при «массовом» наблюдении неба.

Серьёзной проблемой для наблюдения гамма-всплесков в общем и применимости их для изучения Вселенной, в частности, является их спорадичность и краткость времени, когда послесвечение всплеска, по которому только и можно определить расстояние до него, можно наблюдать спектроскопически.

Изучение эволюции Вселенной
и её крупномасштабной структуры

Изучение крупномасштабной структуры


Данные о крупномасштабной структуре 2df обзора
Первым способом изучения крупномасштабной структуры Вселенной, не потерявший своей актуальности, стал так называемый метод «звёздных подсчётов» или метод «звёздных черпков». Суть его в подсчёте количества объектов в различных направлениях. Применён Гершелем в конце XVIII века, когда о существовании далёких космических объектов только догадывались, и единственными объектами, доступными для наблюдений, были звёзды, отсюда и название. Сегодня, естественно, считают не звёзды, а внегалактические объекты (квазары, галактики), и помимо выделенного направления строят распределения по z.

Крупнейшими источниками данных о внегалактических объектах являются отдельные наблюдения конкретных объектов, обзоры типа SDSS, APM, 2df, а также компилятивные базы данных, такие как Ned и Hyperleda. Например, в обзоре 2df охват неба составлял ~ 5 %, среднее z — 0,11 (~ 500 Мпк), количество объектов — ~ 220 000.

Доминирующим является мнение, что при переходе к масштабам сотен мегапарсек ячейки складываются и усредняются, распределение видимого вещества становится однородным. Однако однозначность в этом вопросе пока не достигнута: применяя различные методики некоторые исследователи приходят к выводам об отсутствии однородности распределения галактик вплоть до самых больших исследованных масштабов. Вместе с тем, неоднородности в распределении галактик не отменяют факта высокой однородности Вселенной в начальном состоянии, выводимого из высокой степени изотропии реликтового излучения.

Вместе с этим установлено, что распределения количества галактик по красному смещению имеет сложный характер. Зависимость для разных объектов различна. Однако для всех них характерно наличие нескольких локальных максимумов. С чем это связано — пока не совсем понятно.

До последнего времени не было ясности в том, как эволюционирует крупномасштабная структура Вселенной. Однако работы последнего времени показывают, что первыми сформировались крупные галактики, и только потом уже мелкие (так называемый downsizing-эффект).

Наблюдения звёздных скоплений


Популяция белых карликов в шаровом звёздном скоплении NGC 6397. Синие квадраты — гелиевые белые карлики, фиолетовые кружки — «нормальные» белые карлики с высоким содержанием углерода.

Главное свойство шаровых скоплений для наблюдательной космологии — много звёзд одного возраста в небольшом пространстве. Это значит, что если каким-то способом измерено расстояние до одного члена скопления, то различие в расстоянии до других членов скопления пренебрежимо мало.

Одновременное формирование всех звёзд скопления позволяет определить его возраст: опираясь на теорию звёздной эволюции, строятся изохроны, то есть кривые равного возраста для звёзд различной массы. Сопоставляя их с наблюдаемым распределением звёзд в скоплении, можно определить его возраст.

Метод имеет ряд своих трудностей. Пытаясь их решить, разные команды, в разное время получали разные возраста для самых старых скоплений, от ~8 млрд лет, до ~ 25 млрд лет.

В галактиках шаровые скопления, входящие в старую сферическую подсистему галактик, содержат множество белых карликов — остатков проэволюционировавших красных гигантов относительно небольшой массы. Белые карлики лишены собственных источников термоядерной энергии и излучают исключительно за счёт излучения запасов тепла. Белые карлики имеют приблизительно одинаковую массу звёзд-предшественниц, а значит — и приблизительно одинаковую зависимость температуры от времени. Определив по спектру белого карлика его абсолютную звёздную величину на данный момент и зная зависимость время—светимость при остывании, можно определить возраст карлика.

Однако данный подход связан как с большими техническими трудностями, — белые карлики крайне слабые объекты, — необходимо крайне чувствительные инструменты, чтоб их наблюдать. Первым и пока единственным телескопом, на котором возможно решение данной задачи является космический телескоп им. Хаббла. Возраст самого старого скопления по данным группы, работавшей с ним: млрд лет, однако, результат оспаривается. Оппоненты указывают, что не были учтены дополнительные источники ошибок, их оценка млрд лет.
Наблюдения непроэволюционировавших объектов


NGC 1705 — галактика типа BCDG

Объекты, фактически состоящие из первичного вещества, дожили до нашего времени благодаря крайне малому темпу их внутренней эволюции. Это позволяет изучать первичный химический состав элементов, а также, не сильно вдаваясь в подробности и основываясь на лабораторных законах ядерной физики, оценить возраст подобных объектов, что даст нижний предел на возраст Вселенной в целом.

К такому типу можно отнести: звёзды малой массы с низкой металличностью (так называемые G-карлики), низкометалличные области HII, а также карликовые неправильные галактики класса BCDG (Blue Compact Dwarf Galaxy).

Согласно современным представлениям, в ходе первичного нуклеосинтеза должен был образоваться литий. Особенность это элемента заключается в том, что ядерные реакции с его участием начинаются при не очень больших, по космическим масштабам, температурах. И в ходе звёздной эволюции изначальный литий должен был быть практически полностью переработан. Остаться он мог только у массивных звёзд населения типа II. Такие звёзды имеют спокойную, не конвективную атмосферу, благодаря чему литий остаётся на поверхности, не рискуя сгореть в более горячих внутренних слоях звезды.

В ходе измерений, обнаружилось, что у большинства таких звёзд обильность лития составляет:


Однако есть ряд звёзд, в том числе и сверхнизкометалличные, у которых обильность значительность ниже. С чем это связано, до конца не ясно, предполагается, что это как-то связано с процессами в атмосфере.

У звезды CS31082-001, принадлежащей звёздному населению типа II, были обнаружены линии и измерены концентрации в атмосфере тория и урана. Эти два элемента имеют различный период полураспада, поэтому со временем их соотношение меняется, и если как-то оценить первоначальное соотношение обильностей, то можно определить возраст звезды. Оценить можно двояким способом: из теории r-процессов, подтверждённой как лабораторными измерениями, так и наблюдениями Солнца; или можно пересечь кривую изменения концентраций за счёт распада и кривую изменения содержания тория и урана в атмосферах молодых звёзд за счёт химической эволюции Галактики. Оба метода дали схожие результаты: 15,5±3,2 млрд лет получены первым способом, млрд лет — вторым.

Слабо металличные BCDG-галактикам (всего их существует ~10) и зоны HII — источники информации по первичному обилию гелия. Для каждого объекта из его спектра определяется металличность (Z) и концентрация He (Y). Экстраполируя определённым образом диаграмму Y-Z до Z=0, получают оценку первичного гелия.

Итоговое значения Yp разнится от одной группы наблюдателей к другой и от одного периода наблюдений к другому. Так, одна, состоящая из авторитетнейших специалистов в этой области: Изотова и Тхуан (Thuan) получили значение Yp=0,245±0,004 по BCDG-галактикам, по HII — зонам на данный момент (2010) они остановились на значении Yp=0,2565±0,006. Другая авторитетная группа во главе с Пеймберт (Peimbert) получали также различные значения Yp, от 0,228±0,007 до 0,251±0,006.

Теоретические модели

Из всего множества наблюдательных данных для построения и подтверждения теорий ключевыми являются следующие:
  1. Все наблюдения, связанные со шкалой расстояний. Именно их результаты дают значения постоянной Хаббла H, в законе носящим его имя:
    cz=H_0 D,,
    где z — красное смещение галактики, D  — расстояние до неё, c — скорость света.
  2. Возраст Вселенной, получаемый из закона расширения должен быть строго больше возраста самых старых объектов. (К примеру, из наблюдений звёздных скоплений)
  3. Измерения первоначального обилия элементов. (К примеру, из наблюдений BCDG-галактик и G-карликов).
  4. Данные реликтового фона.
  5. Данные об эволюции крупномасштабных структур. (Помимо непосредственных наблюдений структуры, источники данных могут быть самые разнообразные от наблюдений отдельных объектов до реликтового фона).
Их интерпретация начинается с постулата, утверждающего, что каждый наблюдатель в один и тот же момент времени, независимо от места и направления наблюдения обнаруживает в среднем одну и ту же картину. То есть на больших масштабах Вселенная пространственно однородна и изотропна. Заметим, данное утверждение не запрещает неоднородности во времени, то есть существования выделенных последовательностей событий, доступных всем наблюдателям.

Сторонники теорий стационарной Вселенной иногда формулируют «совершенный космологический принцип», согласно которому свойствами однородности и изотропности должно обладать четырёхмерное пространство-время. Однако наблюдаемые во Вселенной эволюционные процессы, по всей видимости не согласуются с таким космологическим принципом.

В общем случае для построения моделей применяются следующие теории и разделы физики:

Равновесная статистическая физика, её основные понятия и принципы, а также теория релятивистского газа.
Теория гравитации, обычно это ОТО. Хотя её эффекты проверены только в масштабах Солнечной системы, и её использование в масштабе галактик и Вселенной в целом может быть подвергнуто сомнению.
Некоторые сведения из физики элементарных частиц: список основных частиц, их характеристики, типы взаимодействия, законы сохранения. Космологические модели были бы много проще, если бы протон не был стабильной частицей и распадался бы, чего современные эксперименты в физических лабораториях не подтверждают. На данный момент, комплекс моделей, наилучшим образом объясняющий наблюдательные данные является:
  • Теория Большого Взрыва. Описывает химический состав Вселенной.
  • Теория стадии инфляции. Объясняет причину расширения.
  • Модель расширения Фридмана. Описывает расширение.
  • Иерархическая теория. Описывает крупномасштабную структуру.
Модель расширяющейся Вселенной

Модель расширяющейся Вселенной описывает сам факт расширения. В общем случае не рассматривается, когда и почему Вселенная начала расширяться. В основе большинства моделей лежит ОТО и её геометрический взгляд на природу гравитации.

Если изотропно расширяющуюся среду рассматривать в системе координат, жёстко связанной с материей, то расширение Вселенной формально сводится к изменению масштабного фактора всей координатной сетки, в узлах которой «посажены» галактики. Такую систему координат называют сопутствующей. Начало же отсчёта обычно прикрепляют к наблюдателю.

Единой точки зрения, является ли Вселенная действительно бесконечной или конечной в пространстве и объёме, не существует. Тем не менее, наблюдаемая Вселенная конечна, поскольку конечна скорость света и существовал Большой Взрыв.

Модель Фридмана


В рамках ОТО вся динамика Вселенной может быть сведена к простым дифференциальным уравнениям для масштабного фактора .

В однородном, изотропном четырёхмерном пространстве с постоянной кривизной, расстояние между двумя бесконечно приближенными точками можно записать следующим образом:
где k принимает значение:
  • k=0 для трёхмерной плоскости
  • k=1 для трёхмерной сферы
  • k=-1 для трёхмерной гиперсферы
x — трёхмерный радиус-вектор в квазидекартовых координатах: x = \begin{Bmatrix}x_1, & x_2,& x_3\end{Bmatrix}.  
Если же выражение для метрики подставить в уравнения ОТО, то получим следующую систему уравнений:
  • Уравнение энергии
\left(\frac{\dot a}{a}\right)^2=\frac{8\pi G\rho}{3}-\left(\frac{kc^2}{a^2}\right)+\frac{\Lambda c^2}{3}
  • Уравнение движения
\frac{\ddot a}{a}=-\frac{4\pi G}{3}\left(\rho +\frac{3P}{c^2}\right) + \frac{\Lambda c^2}{3}
  • Уравнение неразрывности
\frac{d\rho}{dt} =-3H\left(\rho +\frac{P}{c^2}\right)
где Λ — космологическая постоянная, ρ — средняя плотность Вселенной, P — давление, c — скорость света.

Приведённая система уравнений допускает множество решений, в зависимости от выбранных параметров. На самом деле значение параметров фиксированы только на текущий момент и с течением времени эволюционируют, поэтому эволюцию расширения описывает совокупность решений.

Объяснение закона Хаббла

Допустим, есть источник, расположенный в сопутствующей системе на расстоянии r1 от наблюдателя. Приёмная аппаратура наблюдателя регистрирует фазу приходящей волны. Рассмотрим два интервала между точками с одной и тойже фазой:
\frac{\delta t_1}{\delta t_0} =\frac{\nu_0}{\nu_1} \equiv 1+z
С другой стороны для световой волны в принятой метрике выполняется равенство:
dt = \pm a(t)\frac{dr}{\sqrt{1-kr^2}}
Если это уравнение проинтегрировать и вспомнить, что в сопутствующих координатах r не зависит от времени, то при условии малости длины волны относительно радиуса кривизны Вселенной получим соотношение:
\frac{\delta t_1}{a(t_1)} =\frac{\delta t_0}{a(t_0)}
Если теперь его подставить в первоначальное соотношение:
1+z = \frac{a(t_0)}{a(t_1)}
После разложения правой части в ряд Тейлора с учётом члена первого порядка малости получим соотношение в точности совпадающее с законом Хаббла. Где постоянная H принимает вид:
H=\frac{\dot a (t)}{a(t)}

ΛCDM


Как уже говорилось, уравнения Фридмана допускают множество решений, в зависимости от параметров. И современная модель ΛCDM — это модель Фридмана с общепринятыми параметрами. Обычно в работе наблюдателей они приводятся в понятиях, связанных с критической плотностью:
\rho_{cr} = \frac{3H_0^2}{8\pi G}
Если выразить левую часть из закона Хаббла, то после приведения получим следующий вид:
1 = \Omega_m +\Omega_k +\Omega_{\Lambda},
где Ωm=ρ/ρcr, Ωk = -(kc2)/(a2H2), ΩΛ=(8πGΛc2)/ρcr. Из этой записи видно, что еслиΩmΛ= 1 , т. е. суммарная плотность материи и тёмной энергии равна критической, то k = 0, т. е. пространство плоское, если больше, то k = 1, если меньше k= -1

В современной общепринятой модели расширения космологическая постоянная положительна и существенно отлична от нуля, то есть на больших масштабах возникают силы антигравитации. Природа таких сил неизвестна, теоретически подобный эффект можно было бы объяснить действием физического вакуума, однако ожидаемая плотность энергии оказывается на много порядков больше, чем энергия, соответствующая наблюдаемому значению космологической постоянной — проблема космологической постоянной.

Остальные варианты на данный момент представляют только теоретический интерес, однако это может измениться при появлении новых экспериментальных данных. Современная история космологии уже знает подобные примеры: модели с нулевой космологической постоянной безоговорочно доминировали (помимо короткого всплеска интереса к другим моделям в 1960-е гг.) с момента открытия Хабблом космологического красного смещения и до 1998 года, когда данные по сверхновым типа Ia убедительно опровергли их.

Дальнейшая эволюция расширения

Дальнейший ход расширения в общем случае зависит от значений космологической постоянной Λ, кривизны пространства k и уравнения состояния P(ρ). Однако качественно эволюцию расширения можно оценить, опираясь на достаточно общие предположения.
Λ > 0
Если значение космологической постоянной отрицательно, то действуют только силы притяжения и более никаких. Правая часть уравнения энергии будет неотрицательной только при конечных значениях R. Это означает, что при некотором значении Rc Вселенная начнёт сжиматься при любом значении k и вне зависимости от вида уравнения состояния.
Λ = 0
В случае, если космологическая постоянная равна нулю, то эволюция при заданном значении H0 целиком и полностью зависит от начальной плотности вещества:

\left(\frac{da}{dt}\right)^2=G\frac{8\pi\rho_0 a_0^3}{3a} -a_0^2H_0\left(\rho_0 - \frac{3H_0^2}{8\pi G}\right).

Если \rho_0 =\rho_{cr}, то расширение продолжается бесконечно долго, в пределе с асимптотически стремящейся к нулю скоростью. Если плотность больше критической, то расширение Вселенной тормозится и сменяется сжатием. Если меньше, то расширение идёт неограниченно долго с ненулевым пределом H.
Λ > 0
Если Λ>0 и k≤0, то Вселенная монотонно расширяется, но в отличие от случая с Λ=0 при больших значениях R скорость расширения растёт:

R\propto exp[(\Lambda/3)^{1/2}t].

При k=1 выделенным значением является \Lambda_c=4\pi G\rho. В этом случае существует такое значение R, при котором R'=0 и R''=0, то есть Вселенная статична.

При Λ>Λc скорость расширения убывает до какого-то момента, а потом начинает неограниченно возрастать. Если Λ незначительно превышает Λc, то на протяжении некоторого времени скорость расширения остаётся практически неизменной.

В случае Λ<Λc всё зависит от начального значения R, с которого началось расширения. В зависимости от этого значения Вселенная либо будет расширяться до какого-то размера, а потом сожмётся, либо будет неограниченно расширяться.

Теория Большого взрыва (модель горячей Вселенной)

Теория Большого взрыва — теория первичного нуклеосинтеза. Отвечает на вопрос — каким образом образовались химические элементы и почему распространённость их именно такая, какая сейчас наблюдается. Зиждется на экстраполяции законов ядерной и квантовой физики, в предположении, что при движении в прошлое, средняя энергия частиц (температура) возрастает.

Граница применимости — область высоких энергий, выше которых перестают работать изученные законы. При этом вещества как такового уже и нет, а есть практически чистая энергия. Если экстраполировать закон Хаббла на тот момент, то окажется, что видимая область Вселенный разместилась в небольшом объёме. Малый объём и большая энергия — характерное состояние вещества после взрыва, отсюда и название теории — теория Большого Взрыва. При этом остаётся за рамками ответ на вопрос: «Что вызвало это взрыв и какова его природа?».

Также теория Большого взрыва предсказала и объяснила происхождение реликтового излучения — это наследие того момента, когда ещё всё вещество было ионизованным и не могло сопротивляться давлению света. Иными словами, реликтовый фон — это остаток «фотосферы Вселенной».

Энтропия Вселенной

Главным аргументом, подтверждающий теорию горячей Вселенной, является значение её удельной энтропии. Она с точностью до численного коэффициента равна отношению концентрации равновесных фотонов nγ к концентрации барионов nb.

Выразим nb через критическую плотность и долю барионов:

n_b=\frac{\rho_cr}{m_p}=1{,}124\cdot 10^{-5}\Omega_b h^2_{100},

где h100 — современное значение Хаббла, выраженное в единицах 100 км/(c Мпк), и, учитывая, что для реликтового излучения с T=2,73 К
n_\gamma\approx 420(1+z)^3 см−3,

получаем:


\eta\simeq n_b/n_{\gamma}\approx 2{,}7\cdot 10^{-8}\Omega_b h_{100}^2\sim 10^{-9}.

Обратная величина и есть значение удельной энтропии.
Первые три минуты. Первичный нуклеосинтез


Основные ядерные реакции на этапе первичного нуклеосинтеза.

Предположительно, с начала рождения (или по крайне мере с конца инфляционной стадии) и в течение времени, пока температура остаётся не ниже 1016 ГэВ (10−10с), присутствуют все известные элементарные частицы, причём все они не имеют массы. Этот период называется периодом Великого объединения, когда электрослабое и сильное взаимодействия едины.

На данный момент невозможно сказать, какие же именно частицы присутствуют в тот момент, но кое-что всё же известно. Величина η — не только показатель удельной энтропии, но и характеризует избыток частиц над античастицами:

\frac{n_p-n_{\bar p}}{n_p}=10^{-9}.

В момент, когда температура опускается ниже 1015 ГэВ, вероятно, выделяются X- и Y-бозоны с соответствующими массами.

Эпоху Великого объединения сменяет эпоха электрослабого объединения, когда электромагнитное и слабое взаимодействия представляют единое целое. В эту эпоху идёт аннигиляция X- и Y-бозонов. В момент, когда температура понижается до 100 ГэВ, эпоха электрослабого объединения заканчивается, образуются кварки, лептоны и промежуточные бозоны.

Настаёт адронная эра, эра активного рождения и аннигиляции адронов и лептонов. В эту эпоху примечателен момент кварк-адронного перехода или момент конфайнмента кварков, когда стало возможным слияние кварков в адроны. В этот момент температура равна 300—1000 МэВ, а время от рождения Вселенной составляет 10−6 с.

Эпохе адронной эры наследует лептонная эра — в момент, когда температура падает до уровня 100 МэВ, а на часах 10−4 с. В эту эпоху состав Вселенной начинает походить на современный; основные частицы — это фотоны, помимо них есть только электроны и нейтрино со своими античастицами, а также протоны и нейтроны. В этот период происходит одно важное событие: вещество становится прозрачным для нейтрино. Возникает что-то наподобие реликтового фона, но для нейтрино. Но так как отделение нейтрино произошло раньше отделения фотонов, когда некоторые виды частиц ещё не проаннигилировали, отдав свою энергию остальным, то и остыли они больше. К настоящему времени нейтринный газ должен был остыть до 1,9 К, если нейтрино не имеют массы (или их массы пренебрежимо малы).

При температуре Т≈0,7 МэВ термодинамическое равновесие между протонами и нейтронами, существовавшее до этого, нарушается и отношение концентрации нейтронов и протонов застывает на значении 0,19. Начинается синтез ядер дейтерия, гелия, лития. Спустя ~200 секунд после рождения Вселенной температура падает до значений, при которых нуклеосинтез более невозможен, и химический состав вещества остаётся неизменным до момента рождения первых звёзд.

Проблемы теории Большого взрыва

Несмотря на значительные успехи, теория горячей Вселенной сталкивается с рядом трудностей. Если бы Большой взрыв вызвал расширение Вселенной, то в общем случае могло бы возникнуть сильное неоднородное распределение вещества, чего не наблюдается. Теория Большого Взрыва также не объясняет расширение Вселенной, она принимает его как факт.

Теория также предполагает, что соотношение числа частиц и античастиц на первоначальной стадии было таким, что дало в результате современное преобладание материи над антиматерией. Можно предположить, что вначале Вселенная была симметрична — материи и антиматерии было одинаковое количество, но тогда, чтобы объяснить барионную асимметрию, необходим некоторый механизм бариогенеза, который должен приводить к возможности распада протона, чего также не наблюдается.

Различные теории Великого объединения предполагают рождение в ранней Вселенной большого числа магнитных монополей, до сего момента также не обнаруженных.

Инфляционная модель

Задача теории инфляции — дать ответы на вопросы, которые оставили после себя теория расширения и теория Большого взрыва: «Почему Вселенная расширяется? И что такое Большой Взрыв?» Для этого расширение экстраполируется на нулевой момент времени и вся масса Вселенной оказывается в одной точке, образуя космологическую сингулярность, часто её и называют Большим Взрывом. По всей видимости, общая теория относительности на тот момент уже неприменима, что приводит к многочисленным, но пока, увы, только чисто умозрительным попыткам разработать более общую теорию (или даже «новую физику»), решающую эту проблему космологической сингулярности.

Основная идея инфляционной стадии — если вести скалярное поле, называемое инфлантоном, воздействие которого велико на начальных стадиях (начиная, примерно с 10−42с), но быстро убывает со временем, то можно объяснить плоскую геометрию пространства, хаббловское расширение же становится движением по инерции благодаря большой кинетической энергии, накопленной в ходе инфляции, а происхождение из малой изначально причинно-связанной области объясняет однородность и изотропность Вселенной.

Однако способов задать инфлатон — великое множество, что в свою очередь порождает целое множество моделей. Но большинство основывается на предположении о медленном скатывании: потенциал инфлантона медленно уменьшается до значения, равного нулю. Конкретный же вид потенциала и способ задания начальных значений зависит от выбранной теории.

Теории инфляции также делятся на бесконечные и конечные во времени. В теории с бесконечной инфляцией существуют области пространства — домены — которые начали расширяться, но из-за квантовых флуктуаций вернулись в первоначальное состояние, в котором возникают условия для повторной инфляции. К таким теориям относится любая теория с бесконечным потенциалом и хаотическая теория инфляции Линде.

К теориям с конечным временем инфляции относится гибридная модель. В ней существует два вида поля: первое ответственно за большие энергии (а значит за скорость расширения), а второе за малые, определяющие момент завершения инфляции. В таком случае квантовые флуктуации могут повлиять только на первое поле, но не на второе, а значит и сам процесс инфляции конечен.

К нерешенным проблемам инфляции можно отнести скачки температуры в очень большом диапазоне, в какой-то момент она падает почти до абсолютного нуля. В конце инфляции происходит повторный нагрев вещества до высоких температур. На роль возможного объяснения столь странного поведения предлагается «параметрический резонанс».

Мультивселенная

«Мультивселенная», «Большая Вселенная», «Мультиверс», «Гипервселенная», «Сверхвселенная», «Мультиленная», «Омниверс» — различные переводы английского термина multiverse. Появился он в ходе развития теории инфляции.

Области Вселенной, разделённые расстояниями больше размера горизонта частиц, эволюционируют независимо друг от друга. Любой наблюдатель видит только те процессы, которые происходят в домене, равном по объёму сфере с радиусом, составляющим расстояние до горизонта частиц. В эпоху инфляции две области расширения, разделённые расстоянием порядка горизонта, не пересекаются.

Такие домены можно рассматривать как отдельные вселенные, подобные нашей: они точно так же однородны и изотропны на больших масштабах. Конгломерат таких образований и есть Мультивселенная.

Хаотическая теория инфляции предполагает бесконечное разнообразие Вселенных, каждая из которых может иметь отличные от других Вселенных физические константы. В другой теории Вселенные различаются по квантовому измерению. По определению эти предположения нельзя экспериментально проверить.

Альтернативы теории инфляции

Модель космической инфляции вполне успешна, но не необходима для рассмотрения космологии. У неё имеются противники, в числе которых можно назвать Роджера Пенроуза. Их аргументы сводятся к тому, что решения, предлагаемые инфляционной моделью, оставляют за собой упущенные детали. Например, никаких фундаментальных обоснований того, что возмущения плотности на доинфляционной стадии должны быть именно такими малыми, чтобы после инфляции возникала наблюдаемая степень однородности, эта теория не предлагает. Аналогичная ситуация и с пространственной кривизной: она очень сильно уменьшается при инфляции, но ничто не мешало ей до инфляции иметь настолько большое значение, чтобы всё-таки проявляться на современном этапе развития Вселенной. Иными словами, проблема начальных значений не решается, а лишь искусно драпируется.

В качестве альтернативы предлагаются такие экзотические теории, как теория струн и теория бран, а также циклическая теория. Основная идея этих теорий заключается в том, что все необходимые начальные значения формируются до Большого взрыва.

Теория струн требует дополнить обычное четырёхмерное пространство-время ещё несколькими измерениями, которые играли бы роль на раннем этапе Вселенной, но сейчас находятся в компактифицированном состоянии. На неизбежный вопрос, почему же эти измерения компактифицированы, предлагается следующий ответ: суперструны обладают T-дуальностью, в связи с чем струна «наматывается» на дополнительные измерения, ограничивая их размер.

В рамках теории бран (М-теории) всё начинается с холодного, статичного пятимерного пространства-времени. Четыре пространственных измерения ограничены трёхмерными стенами или три-бранами; одна из этих стен и является пространством, в котором мы живём, в то время как вторая брана скрыта от восприятия. Существует ещё одна три-брана, «потерянная» где-то между двумя граничными бранами в четырёхмерном пространстве. Согласно теории, при столкновении этой браны с нашей высвобождается большое количество энергии и тем самым образуются условия для возникновения Большого взрыва.

Циклические теории постулируют, что Большой взрыв не является уникальным в своём роде, а подразумевает переход Вселенной из одного состояния в другое. Впервые циклические теории были предложены в 1930-е годы. Камнем преткновения таких теорий стал второй закон термодинамики, согласно которому энтропия может только возрастать. А значит, предыдущие циклы были бы намного короче и вещество в них было бы намного горячее, чем в момент последнего Большого взрыва, что маловероятно. На данный момент существует две теории циклического типа, сумевшие решить проблему всевозрастающей энтропии: теория Стейнхардта-Тюрока и теория Баум-Фрэмптона.

Теория эволюции крупномасштабных структур


Как показывают данные по реликтовому фону, в момент отделения излучения от вещества Вселенная была фактически однородна, флуктуации вещества были крайне малыми, и это представляет собой значительную проблему. Вторая проблема — ячеистая структура сверхскоплений галактик и одновременно сфероподобная — у скоплений меньших размеров. Любая теория, пытающаяся объяснить происхождение крупномасштабной структуры Вселенной, в обязательном порядке должна решить эти две проблемы (а также верно смоделировать морфологию галактик).

Современная теория формирования крупномасштабной структуры, как впрочем и отдельных галактик, носит названия «иерархическая теория». Суть теории сводится к следующему: вначале галактики были небольшие по размеру (примерно как Магелланово облако), но со временем они сливаются, образуя всё большие галактики.

В последнее время верность теории поставлена под вопрос и не в малой степени этому способствовал downsizing. Однако в теоретических исследованиях эта теория является доминирующей. Наиболее яркий пример подобного изыскания — Millennium simulation (Millennium run).

Общие положения

Классическая теория возникновения и эволюции флуктуаций в ранней Вселенной — это теория Джинса на фоне расширения однородной изотропной Вселенной:
\vartriangle\Phi=4\pi G\rho\delta,
\frac{\partial\delta}{\partial t}+Hx\triangledown\delta+\triangledown v=0,
\frac{\partial v}{\partial t} + Hv+H(x\triangledown)v=-u_s^2\triangledown\delta - \triangledown\Phi.
где us — скорость звука в среде, G — гравитационная постоянная, а ρ — плотность невозмущённой среды, \delta=\frac{\delta\rho}{\rho}. — величина относительной флуктуации, Φ — гравитационный потенциал, создаваемый средой, v — скорость среды, p(x,t) — локальная плотность среды и рассмотрение происходит в сопутствующей системе координат.
Приведённую систему уравнений можно свести к одному, описывающий эволюцию неоднородностей:
\frac{\partial^2\delta}{\partial t^2} +2H\frac{\partial\delta}{\partial t}+\left(\frac{k^2}{a^2}u_s^2-4\pi G\rho\right)\delta=0,
где a — масштабный фактор, а k — волновой вектор. Из него, в частности, следует, что нестабильными являются флуктуации размер которорых превышает:
\lambda > \lambda_J=\sqrt{\frac{u_s^2\pi}{G\rho}}
При этом рост возмущения идёт линейным образом или слабее, в зависимости от эволюции параметра Хаббла и плотности энергии.

Данная модель адекватно описывает коллапс возмущений в нерелятивистской среде, если их размер гораздо меньше текущего горизонта событий (в том числе и для тёмной материи во время радиационно-доминированной стадии). Для противоположных случаев необходимо рассматривать точные релятивистские уравнения. Тензор энергии-импульса идеальной жидкости с учётом малых возмущений плотности
T^{\mu}_{\nu}=(\rho+\delta\rho+p+\delta p)u^{\mu}u_{\nu}-\delta^{\mu}_{\nu}(p+\delta p)
ковариантно сохраняется, из чего следуют уравнения гидродинамики, обобщённые для релятивистского случая. Вместе с уравнениями ОТО они представляют исходную систему уравнений, определяющих эволюцию флуктуаций в космологии на фоне решения Фридмана.

Эпоха до рекомбинации

Выделенным моментом в эволюции крупномасштабной структуры Вселенной можно считать момент рекомбинации водорода. До этого момента действуют одни механизмы, после — совсем другие.

Первоначальные волны плотности больше горизонта событий и не влияют на плотность материи во Вселенной. Но по мере расширения размер горизонта сравнивается с длиной волны возмущения, как говорят «волна выходит из под горизонта» или «входит под горизонт». После этого процесс её расширения — распространение звуковой волны на расширяющемся фоне.

В эту эпоху под горизонт входят волны с длиной волны на нынешнюю эпоху не более 790 Мпк. Волны, важные для формирования галактик и их скоплений, входят в самом начале этой стадии.

В это время вещество представляет собой многокомпонентную плазму, в которой есть много различных эффективных механизмов затухания всех звуковых возмущений. Пожалуй, самый эффективный среди них в космологии — затухание Силка. После того, как все звуковые возмущения подавлены, остаются лишь адиабатические возмущения.

Какое-то время эволюция обычной и тёмной материи идут синхронно, но из-за взаимодействия с излучением температура обычного вещества падает медленнее. Происходит кинематическое и термическое разделение тёмной материи и барионного вещества. Предполагается, что этот момент наступает при 105.

Поведение барион-фотонной компоненты после разделения и вплоть до окончания радиационной стадии описывается уравнением:
\Phi''+\frac{4}{\eta}\Phi'+u_s^2k^2\Phi=0,
где k — импульс рассматриваемой волны, η — конформное время. Из его решения следует, что в ту эпоху амплитуда возмущений плотности барионной компоненты не росла и не убывала, а испытывала акустические осцилляции:
\delta_{rad}\propto -cos(u_sk\eta).
В это же время тёмная материя таких осцилляций не испытывала, так как ни давление света, ни давление барионов и электронов не оказывает на неё воздействия. Более того, амплитуда её возмущений растет:
\delta_{CDM}\propto ln(k\eta).
После рекомбинации

После рекомбинации давление фотонов и нейтрино на вещество уже пренебрежимо мало. Следовательно, системы уравнений, описывающие возмущения тёмной и барионной материи, аналогичны:
\delta'-k^2 v=3\Phi',
v'+\frac{2}{\eta}v=-\Phi.
Уже из схожести вида уравнений можно предположить, а потом и доказать, что разность флуктуаций между тёмной и барионной материй стремится к константе. Иными словами, обычное вещество скатывается в потенциальные ямы, сформированные тёмной материей. Рост возмущений сразу после рекомбинации определяется решением
\delta=C_1+\frac{\Omega_B}{\Omega_{CDM}}C_2\frac{1}{\eta}+\frac{C_3}{\eta^3}+C_4\eta^2,
где Сi — суть константы, зависящие от начальных значений. Как видно из вышенаписанного, на больших временах флуктуации плотности растут пропорционально масштабному фактору:
\delta\propto\eta^2\propto a(\eta).
Все скорости роста возмущений, приведённые в этом параграфе и в предыдущем, растут с волновым числом k, следовательно, при начальном плоском спектре возмущений на стадию коллапса раньше выходят возмущения наименьших пространственных масштабов, то есть первыми образуются объекты с меньшей массой.
Для астрономии интерес представляют объекты с массой ~105Mʘ. Дело в том, что при коллапсе тёмной материи образуется протогало. Водород и гелий, стремящиеся к его центру, начинают излучать, и при массах меньших, чем 105Mʘ, это излучение вышвыривает газ обратно на окраины протоструктуры. При бо́льших массах запускается процесс формирования первых звёзд.

Важным следствием начального коллапса является то, что возникают звёзды большой массы, излучающие в жёсткой части спектра. Испущенные жёсткие кванты в свою очередь встречаются с нейтральным водородом и ионизуют его. Таким образом сразу после первой вспышки звездообразования происходит вторичная ионизация водорода.

Стадия доминирования тёмной энергии

Предположим, что давление и плотность тёмной энергии не меняется со временем, то есть она описывается космологической константой. Тогда из общих уравнений для флуктуаций в космологии следует, что возмущения эволюционируют следующим образом:
\delta_M\propto a^3\frac{k^2}{a^2}\Phi.
Учитывая, что потенциал при этом обратно пропорционален масштабному фактору a, это означает, что рост возмущений не происходит и их размер неизменен. Это означает, что иерархическая теория не допускает структур больше ныне наблюдаемых.

В эпоху доминирования тёмной энергии происходят два последних важных события для крупномасштабных структур: появление галактик, подобных Млечному Пути — это происходит на z~2, а немного погодя — образование скоплений и сверхскоплений галактик.

Проблемы теории


Иерархическая теория — логично вытекающая из современных, проверенных, представлений о формировании звёзд и использующая большой арсенал математических средств, в последнее время столкнулась с целым рядом проблем, как теоретического, так и, что более важно, наблюдательного характера:

Самая большая теоретическая проблема лежит в том месте, где происходит сшивка термодинамики и механики: без введения дополнительных нефизических сил невозможно заставить два гало из тёмной материи слиться.

Войды формируются скорее ближе к нашему времени, нежели к рекомбинации, однако не так давно обнаруженные абсолютно пустые пространства размерами в 300 Мпк вступают в диссонанс с этим утверждением.

Также не вовремя рождаются гигантские галактики, их число в единице объёма на больших z гораздо больше того, что предсказывает теория. Более того, оно остаётся неизменным, когда по теории должно очень быстро расти.

Данные по самым старым шаровым скоплениям не хотят мириться со вспышкой образования звёзд массой порядка 100Мʘ и предпочитают звезды типа нашего Солнца. И это лишь часть тех проблем, которые встали перед теорией.

Если проэкстраполировать закон Хаббла назад во времени, то в итоге возникнет точка, гравитационная сингулярность, называемая космологической сингулярностью. Это большая проблема, так как весь аналитический аппарат физики становится бесполезным. И хотя, следуя путём Гамова, предложенным в 1946 году, можно надёжно экстраполировать до момента, пока работоспособны современные законы физики, но точно определить этот момент наступления «новой физики» пока не представляется возможным.

Вопрос о форме Вселенной является важным открытым вопросом космологии. Говоря математическим языком, перед нами стоит проблема поиска трёхмерной топологии пространственного сечения Вселенной, то есть такой фигуры, которая наилучшим образом представляет пространственный аспект Вселенной. Общая теория относительности как локальная теория не может дать полного ответа на этот вопрос, хотя некоторые ограничения вводит и она.

Во-первых, неизвестно, является ли Вселенная глобально пространственно плоской, то есть применимы ли законы Евклидовой геометрии на самых больших масштабах. В настоящее время большинство космологов полагают, что наблюдаемая Вселенная очень близка к пространственно плоской с локальными складками, где массивные объекты искажают пространство-время. Это мнение было подтверждено последними данными WMAP, рассматривающими «акустические осцилляции» в температурных отклонениях реликтового излучения.

Во-вторых, неизвестно, является ли Вселенная односвязной или многосвязной. Согласно стандартной модели расширения, Вселенная не имеет пространственных границ, но может быть пространственно конечна. Это может быть понято на примере двумерной аналогии: поверхность сферы не имеет границ, но имеет ограниченную площадь, причём кривизна сферы постоянна. Если Вселенная действительно пространственно ограничена, то в некоторых её моделях, двигаясь по прямой линии в любом направлении, можно попасть в отправную точку путешествия (в некоторых случаях это невозможно из-за эволюции пространства-времени).

В-третьих, существуют предположения, что Вселенная изначально родилась вращающейся. Классическим представлением о зарождении является идея об изотропности Большого взрыва, то есть о распространении энергии одинаково во все стороны. Однако появилась и получила некоторое подтверждение конкурирующая гипотеза: группа исследователей из Мичиганского университета под руководством профессора физики Майкла Лонго (Michael Longo) установила, что спиральные рукава галактик, закрученные против часовой стрелки, встречаются на 7 % чаще, чем галактики с «противоположной ориентацией», что может свидетельствовать о наличии изначального момента вращения Вселенной. Данная гипотеза должна быть также проверена наблюдениями в Южном полушарии.

По материалам Wikipedia